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1 BEEOBRE

The outline of this research project was to detect anomaly,
both from bio-signals generated from the driver’s body, as well
as that from the car are collected in real-time, processed to find
any abnormal situation and used to create necessary signals for
safe driving. Bio-signals can tell us about physical as well as
emotional state of the driver. In the present state, Bio-signals
like ECG, EMG, pulse rate, GSR data are collected
continuously by sensor and transmitted to a system module
which is connected to a tablet or a smart-phone to analyze the
data. Signals from car, like gas-pedal pressure, brake-pressure,
steering angle are collected simultaneously. Multivariate signals,
collected as the driver’s bio-signals and car-status signals are
simultaneously analyzed to check whether the driver’s decision
is correct, or not. Depending on the situation, the system needs
to override driver’s decision for his/her own safety.

The main difference of this system, compared to existing
safety procedures and that, existing safety measures are mostly
external, like distance with nearby objects. This type of external
safety equipment are important too, and they can co-exist with
the proposed system. Two important aspects of the proposed
systems are: (1) It learns the driving style of the particular driver
and knows when it is beyond this driver’s control; (2) It also
monitors the bio-signals from which the health status of the
driver could be decided and hopefully predicted. The overall
operation of the system is shown below.
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2 BRORE

Up till now, we were able to collect ECG and pulse data. The

aim of the project is to analyze multi-variate data to find any
anomaly, a discord. In addition, most of the bio-signals are
quasi-periodic, but not all. Signals sensing the state of the car
(gas, brake or steering) are not quasi periodic as well. Analyzing
all these signals together to identify different discords, and take
proper decision is the main motivation of this project. As the car
signals were not available, we just analyzed bio-signals to find
discords. The rest of this report describes the methodology and
results obtained. Our main motivation is to build an algorithm,
which is light to run on platforms like smart phone, and identify
discord in real-time. Results achieved are reported in Section 3.

There are many mobile applications to record bio-signals.
The recorded data is uploaded on a PC for off-line analysis.
There are studies on anomaly detection, both on periodic and
non-periodic signals. Various techniques are used, such as
HMM [1] based, prediction based [2], similarity based [3],
window based [4] and segmentation based [5]. Depending on
the algorithm used, anomaly location and the length of anomaly
would vary. Bio-signals shape and period varies to some extent,
even when normal. Ground truth is understood and could be
identified correctly only by domain experts, in case of
bio-signals by a health professional. We will identify anomaly
on the basis of algorithmic analysis, and compare with true
results.

Previous related works have some pitfalls. They are
computationally heavy, and are not able to identify all anomaly
locations, if there are more than one, as they are designed to
find maximum deviation from other subsequences. As we
assume weak computational platform, the proposed algorithm
has to be light in computation and memory requirement. In
addition, we need to be able to locate multiple anomalies (i.e.,
discords), if they are present in the signal.

Time series discords are subsequences of a longer time series
that are maximally different from all the rest of the
subsequences of the whole sequence. Discords could be
detected by comparing every pair of sub-sequences (also called
windows) and detect the ones with largest distances from their



nearest (least distant) neighbors. We can find such a discord
using brute force method which is computationally heavy with
time complexity of @ (n?), where n is the total number of
possible subsequences out of the whole time series. Brute force
method can list such subsequences in order of distances, and
thus is able to detect all discords. Let us consider a discrete time
series consisting of T time-slots. Let us also consider
subsequences of length m time-slots where m << T . Thus, the
original signal consists of n = (T —m + 1) subsequences. i*"
Sub-sequence starts at i‘™ slot, where 0 <i < (T — m). In
previous works, the length of the subsequence was user defined
[4]. In our work, we set the length m equal the fundamental
period of time series. Thus, our method is applicable only to
periodic signals. As m << T', m << n. We propose a new concept
we called “mother signal”. We consider only periodic signals
and m is set equal to the fundamental period. Physically, mother
signal is the average of subsequences of length m, which are
normal (not discords) and therefore their number is
overwhelmingly large compared to discords. Once mother
signal is created, discords are detected more efficiently. Even by
exhaustive comparison with mother signal, the complexity is
O(m x n),,and O(n?) >0O(m X n). The largest discord is
the one whose distance is highest from the mother signal.

We can detect multiple discords, which are defined as
subsequences whose distances with mother signal exceed a
pre-defined threshold. Otherwise, we can identify and list the
discords according to their distances from the mother signal.

In addition, we collect eye-tracking data of the driver. To do
that, we performed the whole experiment on a diving simulator,
where eye-tracking data collection was possible. As different
situation create different emotions, especially a sudden
dangerous situation will create strong emotion, it will be
reflected in some bio-signals. Our aim is to correlate the visual
stimuli with emotion. This experiment is not completed. An
overview is shown below:

3 CHhETROLNI-BIEOMR

In this work, we detected discords from ECG data, which is
periodic, but the period differs slightly. We need to find the
period for every such sub-sequences. For that, we find the tip of

the pulse and the distance between tips determine the period.
This is explained in Fig. 1.
Clustering of Subsequences

* X-means Clustering
* The mother signal is the average of members of the
cluster with largest cardinality.
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Fig. 1 Finding sub-sequence time-durations

Next, the sub-sequences with slightly different lengths are
clustered. For distance measurement, because the
time-durations are different, DTW would have worked fine.
But, because DTW is computationally heavy, we abandoned
that. Instead, we converted the signals to equal length using
Lanczos2 algorithm which is very fast. The clustering result is
shown in Fig. 2

Clustering of Subsequences

* X-means Clustering
* The mother signal is the average of members of the
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Fig. 2 Average of the cluster with largest cardinality is the
mother signal

For very long sequence, to mitigate the drift (due to jogging
or other physical activities), we used sliding window to find the
mother signal suitable for the present situation. This is
explained in Fig. 3 below.

For Very Long Time Series

* To process very long time series, we create mother signals
for pre-defined intervals {windows).
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Fig. 3 The sliding window to mitigate drift
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The results of the experiment, is shown in Fig. 4. We can see
that the computation is more than 8 times faster. In addition, the
F-measure is either better or very near to recently published
works. In fact, the overall F-measure is much better as shown
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on top-right of Fig. 4.
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Fig. 4 Experimental results, the computation time as well as
correct identification accuracy

In ECG signals, there are two types of discords knows as
Premature Ventricular Contraction (PVC) and SupraVenticular
Premature Contraction (SVPC). In Table. 1, we show the
results of correct detection as well as mis-detection. The

processing time for the whole signal is shown in the last column.

As we use a window size of 20 sub-sequences, which translates
to T=20,000, the detection takes around 0.6 seconds, which is
almost instantaneous. It ensures possibility of real-time
application.

*Data used include several anomalies
* Premature Ventricular Contractions (PVCs)
i ion (SVPC)

*Processing time is shown

1 | 1000500 18 14 2 31.10
2 | 1000500 9 8 1 3207
3 | 1000500 12 2 3098
4| 1000500 23 20 2 33.93
5 | 1000500 za SR 10 a 3386
6 | 1800000 86 86 1 64.87
7 | 1800000 9 2 63.40
8 | 1800000 8 8 2 7152

Table.1 The correct detection ratio and time needed

The proposed algorithm, though can detect most of the PVC
discords, it can not detect SVPC discords. The distance
measurement is not sufficient to detect the subtle shape
distortion in case of SVPC. This is shown below in Fig. 5. This
is the data of subject 6, with 86 PVC discords, all of which
could be detected. There is 1 mis-detection, of false-positive

type.

®The Proposed algorithm can detect PVCs, but not SVPC.

Result of Subject b 1 @rves
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® We need to add other features
to detect SVPC anomaly

Fig. 5 PVC discords are detected, though SVPC are not

4 SHRORKHTRRR

In the present work, we analyzed only bio-signals. The most
important one, ECG is reported here.To understand the
emotional state of the driver, we need multivariate analysis of
several bio-signals, like ECG, pulse, GSR etc. In addition, we
need to correlate them with driving state, like curve on the road,
or alarming situation. For that, we need to take data while
driving the simulator. We need wireless sensors to keep the
driver free to move the steering, or maneuvering brake and gas.
We will perform those experiments in the near future.
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