産業利用を想定したBluetooth Low Energyによる受発信混在型測位

岡本 東（ソフトウェア情報学部、准教授）、堀川三好（ソフトウェア情報学部、准教授）、古館道也、工藤大希（大学院ソフトウェア情報学研究科、博士前期課程）

＜要旨＞
本研究は、屋内ナビゲーション実現のために開発した屋内測位技術を応用し、製造業における人員・物品の測位を実現するため、方法論の確立や技術的な検証を行うことを目的とする。主に、(a) BLE ビーコン・携帯端末の電波特性、(b) 信頼の配数と精度の変化の原因、(c) 信頼・受信機の適切な配置、(d) 静止した対象のための測位の精度向上、の4項目について実験や検討を行い、3形態の受信機構の配位方法を利点・欠点と共にまとめた。

1 研究の概要
これまでに、屋内測位のための技術開発を行い、高精度な屋内ナビゲーションを実現した。この成果を用いて、サービス導入に向けた準備が進められている。しかし、一般に屋内ナビゲーション単独での収益化は困難であり、交通機関・商品販売など、他のサービスの付加価値として提供することが一般的である。本研究成果の応用においても、利用者の視見になる各ブロックを中心に展開され視見を、現在のところ岩手県内での導入予定はない。
一方、この屋内測位技術は、広く普及しているスマートフォン・タブレットなど（携帯端末、受信機）や小型・軽量・低消費電力のBluetooth Low Energy ビーコン（BLE ビーコン、送信機）を用い、単なる屋内ナビゲーション利用に止まらず、製造業における人員・物品の測位などに応用することができると考えられる。
本研究は、これらのような測位を実現する方法論の確立や技術的な検証を行うことを目的とする。具体的な用途として、マテリアルハンドリングをはじめとする生産システムの改善や、資源・資材配置の改善の検証のためのデータ収集などが考えられる。このような形態の適用であれば、収益化に際して地域の人口差の影響はありませんなく、立場した方法論を岩手県内での製造業に適用することにより、競争力向上へ役立てることが可能であると考えられる。

2 研究の内容
歩行者ナビゲーションは一種の測位サービスであり、本研究の目的である生産設備内における人員・物品の測位（以下、本測位）にも同じ技術が利用できると考えられる。
しかし、条件には差異があり単純に適用することは難しいことが想定される。歩行者ナビゲーションの受信機は利用者が所有しているものを利用し、充電等も利用者が行う。そのため、サービス提供側は送信機についてのみ、充電等も含めたコスト等を考慮すればよい。一方、本測位では、送信機・受信機の両方を用意する必要があり、総合的なコストを考慮する必要がある。そのため、建物に送信機を設置し、測位対象が受信機を持つ形以外に、送信機を逆に設置することや、両方の折衷も考えられる。
また、実際に適用した際に明らかになった課題がある。歩行者ナビゲーションでは、それを必要とする利用者は移動し続けるのが一般的で、静止することは一般的である。一方、物の測位においては長時間静止状態であることが多い。
受信信号強度（Received Signal Strength Indicator、RSSI）から送信機間の距離の推定を行い、測位に利用することは一般的な着想であるが、従来はあまり高い精度は得られていなかった。主な原因は、電波の反射・回折や干渉によって、RSSIの強弱が距離の関係が一致しないことが挙げられる。これまでの研究（主に5, 7）では、個々のRSSIの数を距離に換算せずに複数のRSSIをベクトルとして扱う手法や、歩行者ナビゲーションでは測位対象が移動し続けるため、適切な平滑化を行う様々な正負の影響を相殺して精度向上を実現し、実用化に結び付ければ良い。しかし、長期間静止している対象に対しては、この手法が直接利用できない。
また、BLE ビーコンと携帯端末の組合せにより、特有のRSSIの変動があることがわかった。
さらに、一般には送信機であるBLEビーコンの近傍では精度が高くなるが、全域での高い精度を求めるBLEビーコンの設置間隔を短くすると逆に精度が下がる場合があることもわかった。
以上を踏まえ、以下に実験に用いるための組み合わせを行った：
(a) BLE ビーコン・携帯端末の電波特性
(b) 送信機の配置数と精度の変化の原因
(c) 送信機・受信機の適切な配置
(d) 静止した対象のための測位の精度向上
3 これまで得られた研究の成果

iBeacon は、BLE における ADV_NONCONN_IND PDU（Protocol Data Unit）のペイロード内で利用できる最大 31 オクテットのデータ領域（AdvData）のフォーマットを規定したものである（図1）。このものと同じように、Google の Edgystone [12] などがある。

BLE は 2010 年 6 月に改訂された Bluetooth 4.0 で追加されたもので、それ以前からある Bluetooth と同様に 2.4GHz 帯を用いるが、その利用方法は大幅に異なっている。BLE はその名の通り、規格の拡張として省電力があり、さらに、BLE ビーチンは単一の機能に特化しているため、ボタン電池 1 個で 1 年～数年の動作が可能な製品もある。ただし、電池の寿命は出力（送信電力）の大きさやパケット送信間隔に大きく依存する。

図 1: ビーチンのパケット構成例 ([9], [13] を元に作成)

(a) BLE ビーチン・携帯端末の電波特性

自由空間における理論上の RSSI は式（1）で求められる。

\[P_r (d) = P_s + G_r + G_t - 20 \log_10 \left(\frac{4 \pi df}{c} \right) \]

ここで、各変数は以下の通りである。

\[d \text{: 送信機から受信用までの距離 [m]} \]

\[P_r (d) \text{: 距離dにおける理論上のRSSI [dBM]} \]

\[P_s \text{: 送信電力 [dBM]} \]

\[G_r \text{: 受信利得 [dBi]} \]

\[G_t \text{: 送信利得 [dBi]} \]

\[f \text{: 周波数 [Hz]} \]

\[c \text{: 光速 [m/s]} \]

しかし、これを利用して距離を測定するためには以下のような課題がある。

(a-1) 周辺環境

屋外では、地面による反射などの影響がある。実測値の例を図 2a, 2b に示す。大地反射を考慮した 2 波モデルに近い形になっているが、このモデルで近似する場合、逆関数が存在せず、単純に RSSI から距離を求める事はできない。

屋内では、床・天井・壁の反射の他に壁や柱による遮蔽などもあり、理論値算出のためのモデル構築は困難である。実測値の例を図 3a, 3b に示す。
(a-2) BLE ピーク・端末の仕様や個体差
式（1）における P_a, G_a, G_e は、一意に定まらない。これを解消するため、事前に実測値をアドバタイジングのパケットに含めている製品もある。例えば iBeacon では、ベイロードの最後のオクテットが Measured Power (1m 地点での RSSI 値) となっている。ただし、すべての BLE ピークについて校正が行われているわけではない。また、この仕組みを利用できたとしても、補正可能なのは BLE ピーク単の個体差 $P_a + G_e$ だけである。図 2a, 2b, 3a, 3b からもわかる通り、G_e と端末ごとに大きく異なる。

(a-3) アドバタイジングのチャネル切替え
BLE のアドバタイジングでは、Channel Index 37 (2,402 MHz), 38 (2,426 MHz), 39 (2,480 MHz) の 3 つの周波数を利用しており、式（1）の f が異なるだけでなく、送受信アンテナ等の都合によりそれぞれの大きな差となる。送信側は 10 [ms] 以内の短い間隔でそれぞれの周波数のアドバタイジングのパケットを送信しているが、一般的な端末は 1 つのチャネルのパケットを連続して受信することはできず、一定間隔で切替えながら受信を行っている。この切替えの間隔は端末によって異なる。
測定の結果、arrows MO3 (Fujitsu) ・Zenfone 3 Z017DA (ASUS) ・Nexus 5X (LG, Google) では、1 周期 1 秒前後のチャネル切替えに起因すると考えられる RSSI の変化があった。
また、Nexus 9 (HTC, Google) ・Xperia Z3 Tablet Compact SGP612 (Sony) では 1 周期 15 秒で 5 秒ずつ異なるチャネルを利用していると考えられる変化があった。測定結果の一部を図 4, 5 に示す。

(b) 信機の配置数と精度の変化の原因
近傍に BLE ピークを多数配置した場合、幅線による問題が発生していると考えられる。密集配置した BLE ピークの個数と、信信に対して受信 (RSSI の測定) ができた割合 (受信率) の実測結果を図 6 に示す。1 個の場合は多くの端末で受信率が 90% 以上、一部の取りこぼしのある端末でも 80% 以上であった。しかし、40 個を 1 節所にまとめて置いた場合、受信率は 60 〜 25% 程度となった。受信機の性能に起因すると考えられる差異も大きい。
また、5 個や 10 個程度であっても受信率の低下は明確である。BLE ピークのうちには複数のピークの機能を 1 つのパッケージに収めたもの (マルチピクニ) もあり、その場合には外見上1個であっても複数のBLE ピークを密集配置したのと同等であるため注意が必要である。これらの結果より、BLE ピークを基準位置に配置することが、基準位置の間隔を狭くしうると問題が起きる他、物品に BLE ピークを取付ける場合に、多くの物品を 1 節所に集めると同様の問題が生じる。
(c) 送信機・受信機の適切な配置

本測位は、大別して人員の測位と物品の測位がある。測位結果は、ピッキングなどのための物品の位置の把握、人員や物品の動線分析を行うためのデータなどに用いることが想定される。

本測位の場合、歩行者測位より以下の点が容易になると考えられる：
- 品末の種類を揃えることができ、揃っていない場合に事前に校正を行うことができる。このため、RSSI から距離（理論値）への換算も比較的容易になり、精度向上に貢献すると考えられる。
- 必ずもし位置情報が必要である場合、過去のデータを用いた統計処理や推定を行った箇所を、後のデータも含めて行うことができる。精度が向上すると考えられる。
- 一方、以下のような点を考慮する必要があると考えられる：
 - 物品に対する測位をどの程度の単位で行うかを事前に決める必要がある。歩行者測位は 1 個物差が自明であるが、物品の場合は個々の品物、ケースなどまとまった単位とするか、などの選択肢がある。
 - 歩行者測位の場合、移動しながら取得した RSSI を統計処理することによって、反射波の影響を減らすことができ、物品の場合は長時間静止する場合もあり得る。

BLE ピーコンを用いた歩行者測位手法は、利用者の所有する端末の利用を前提としており、必然的に BLE ピーコンを施設や通路の基準位置に設置し、基準位置からの相対位置を求めることになる。しかし、生産設備での測位では、測位対象的には信頼性が高い。測位の位置に信頼性を置くことも可能である。

このような配置にする場合、以下のメリットがある：
- 送信機よりも電力消費の大きい受信機を固定することによって、常時電源供給が可能となり、充電等の作業が大幅に減少する。
- 測位対象が多い場合、送信機の方が端末より大幅

に安価であるため、トータルコストを抑えることができるとおり、デメリットは以下のとおり。
- 測位対象が非常に多い場合、送信機が密集するということになり、結果による問題が発生する。
- 受信機である携帯端末内蔵している加速度センサなどを測位に利用することができない。

(d) 静止した対象のための測位の精度向上

前述の通り、完全に静止した状態では、RSSI を用いた測位（測距）は困難である。これまでに開発した手法では、少数の送信機を用いて受信機の存在するエリアを推定する実験を行った。図 7 は実験に用いた環境で、A から F の 6 つの送信機からの RSSI のみを用いて、受信機 X (3, 0) の位置を推定した際の分布である。比較的近い場所 ((5, 0) 付近) が推定できているケースが多いものので、まったく離れた場所 ((6, 0) 付近や (8, 6)) が推定されてしまうケースもある。これは、反射波の干渉、偏状物があって観測される RSSI が弱まり、距離が実際によりも大きいと推定されていることが主な原因である。移動体が到達する前に、それまで推定位置に誤差を用いて、急に無関係な位置へと動いてしまって可能性を排除することができるが、本測位では静止状態での推定を行う必要がある。

これに対して、2 つの対策が考えられる。ひとつは、すべての送信機からの RSSI を用いて位置推定を行うのではなく、障害物が関与していると推定される送信機を除外する方法である。上記の例では、比較的近い送信機である A の RSSI が反射波との干渉で低くなって考えられる。

具体的には、本来 (A, B, C, D) の 4 つの送信機 (E, F は RSSI が非常に小さいので最初から除外) からの RSSI を用いられるが、(A, B, C, D), (A, C, D), (B, C, D) のように 3 つの組合せを用いて推定した結果を戦略、極端に異なる座標を推定する原因となっている送信機があれば特定し、必要に応じて除外した後に再度推定する。

もうひとつの受信機混在型の測位である。図 8 は送信機を付けた物品の測位に、基準位置の受信機だけでなく、人員が持つ受信機も利用する。人員が持つ受信機の位置は、基準位置に送信機から推定されたものであるため、誤差が累積するものの、移動体の測位と同様の平滑化処理で精度を向上させることができる。

誤差の累積について、基準位置を n=0, n から推定した位置を n+1 とすると、分散は n によりほど多大であるが、n=2 程度であれば、反射波や障害物の影響に比べて十分に小さいと言える。
4 今後の具体的な展開

BLE ビークソーンを用いた測位について、その課題を明らかにし、歩行者ナビゲーションのための測位技術の応用の際に考慮すべき点をまとめた。

実際の生産設備での実証やコスト計算については今後の課題であたため、多くの場合、物資の流動の際には物品追跡をビークーンを取り付ける方が現実的であると考えられる。その際に、装置を減らすための方法を検討する必要がある。また、端末を測位機としても利用することによって、組合せの自由度が向上する。

これまでに、入手容易性から、BLE ビークーンと一般的な端末の組合せでの検討を行った。このため BLE の他、Wi-Fi や 3G/LTE などの通信が併用されている。専用のデバイスの利用が可能であれば、受信機として高値なディスプレイを省いたデバイスを安価で作成できる可能性があり、また、UWB（Ultra-wideband）、LPWAN（Low-Power Wide-Area Network）など、関連する他の技術も視野に入るもの。

5 論文・学会発表等の実績

[2] 堀川三好、岡本 東、町田聡也、工藤大希: CPS 時代の「新しいものづくり」のための生産システム設計に関する研究～移動するモノを対象とした製造プロセス向け IoT の提案～, C03，日本経営学会 2016 年秋季大会

[3] 工藤大希、堀川三好、町田聡也、岡本 東: Online to Offline を対象としたハイブリッド型屋内測位手法の提案, D06, 日本経営工学会 2016 年秋季大会

[8] Daiki Kudou, Mitsuyoshi Horikawa, Tatsuya Furudate and Azuma Okamoto: Indoor
positioning method using proximity Bluetooth low-energy beacon, The 17th Asia Pacific Industrial Engineering and Management Systems Conference (APIEMS 2016), F3-3 (PAPER ID: 236)

6 受賞・特許
なし

7 参考文献
[10] 株式会社イーアールアイ: BLUETUS,
 http://www.bluetus.jp/
[12] Google, Google Beacons,
 https://developers.google.com/beacons/